Home
Class 12
MATHS
lim(x rarr oo)(sin^(4)x-sin^(2)x+1)/(cos...

lim_(x rarr oo)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to oo)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

(lim)_(x rarr)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to (a) 0( b) 1 (c) (1)/(3)(d)(1)/(2)

lim_(xtooo) (sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to

lim_(x->oo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

("lim")_(xvecoo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

("lim")_(xvecoo)(sin^4x-sin^2x+1)/(cos^4x-cos^2x+1) is equal to (a) 0 (b) 1 (c) 1/3 (d) 1/2

lim_(x rarr oo)sin x equals

lim_(x rarr0)(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+4)-2)=

lim_(x rarr oo)sqrt((x-sin x)/(x+cos^(2)x))=

lim_(x rarr0)(sin x^(2)(1-cos x^(2)))/(x^(6))