Home
Class 12
MATHS
" 23."lim(n rarr oo)(1+2+3+...+n)/(n^(2)...

" 23."lim_(n rarr oo)(1+2+3+...+n)/(n^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) (1+2+3+....+n)/(n^(2)+1)=

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo) (1+2+3+…...+n)/(n^(2)), n in N is equal to :

lim_(n rarr oo)(2^(3n))/(3^(2n))=

Let a = lim_(n rarr oo) (1+2+3+.....+n)/(n^(2))= , b = lim_(n rarr oo) (1^(2)+2^(2)+.....+n^(2))/(n^(3))= then

lim_ (n rarr oo) [1+ (2) / (n)] ^ (2n) =

lim_(n rarr oo)((1+2+3+...+n)/(n+2)-(n)/(2))

lim_(n rarr oo)(1-(2)/(n))^(n)

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(x rarr oo) ((2n+1)(3n+2))/(n(n+9))=