Home
Class 10
MATHS
" If "alpha,beta" are the zeros of the p...

" If "alpha,beta" are the zeros of the polynomial "p(x)=ax^(2)+bx+c," then "(1)/(alpha^(2))+(1)/(beta^(2))=

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta are the zeros of the polynomial f(x) = ax^(2) + bx + c then 1/(alpha^2) + 1/(beta^2) = …………….

If alpha, beta are the zeros of the polynomial f(x) = ax^2 + bx + C , then find 1/alpha^(2) +1/beta^(2) .

If alpha, beta are the zeros of the polynomial x^(2) + 6x+2" then " (1/alpha+1/beta)=?

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha^(2))+(1)/(beta^(2)) is

If alpha,beta are the zeroes of the polynomial x^(2)-p(x+1)-q , then (alpha+1)(beta+1)=

If alpha, beta are the zeros of the polynomial f(x) = x^2 – 3x + 2 , then find 1/alpha + 1/beta .

Assertion : If alpha and Beta are the zeroes of the polynomial x^(2)+2x-15 then (1)/(alpha)+(1)/(beta) is (2)/(15) . Reason : If alpha and Beta are the zeroes of a quadratic polynomial ax^(2)+bx+c then alpha+beta=-(b)/(a) and alphabeta=(c)/(a)

If alpha, beta are the zeros of the polynomial x^2 + x - 6 , find the value of 1/alpha^(2) + 1/beta^(2) .

If alpha and beta be the zeroes of the polynomial ax^(2)+bx+c , then the value of (1)/(alpha)+(1)/(beta) is

If alpha,beta , are the zeroes of the polynomial ax^2+bx+c ,then alpha^2+beta^2 =