Home
Class 12
MATHS
If lim(x->0)int0^x(t^2dt)/((x-sinx)sqr...

If `lim_(x->0)int_0^x(t^2dt)/((x-sinx)sqrt(a+t))=1`, then a is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

"If" I=int_0^x(t^2dt)/((x-sinx)sqrt(a+t))a n d(lim)_(xvec0)I=1, then a is equal to : 1 (2) 2 (3) 4 (4) 0 (5) 3

"If" I=int_0^x(t^2dt)/((x-sinx)sqrt(a+t))a n d(lim)_(xvec0)I=1, then a is equal to : 1 (2) 2 (3) 4 (4) 0 (5) 3

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

The value of lim_(x rarr0)(int_(0)^(x) xe^(t^(2))dt)/(1+x-e^(x)) is equal to

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(xto oo) (int_(0)^(x)tan^(-1)t\ dt)/(sqrt(x^(2)+1)) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to

lim_(x to 0)(int_(-x)^(x) f(t)dt)/(int_(0)^(2x) f(t+4)dt) is equal to