Home
Class 12
MATHS
The value of lim(x->0)((sin(x^2))^(1/x^...

The value of `lim_(x->0)((sin(x^2))^(1/x^2)+(1/(x^2))^(x^2))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) equals

The value of lim_(x to 0)(int_(0)^(x^(2))sec^(2)t dt)/(x sin x) is equal to -

The value of lim_(x rarr(pi)/(5))(2sin^(-1)x-(pi)/(2))/(1-2x^(2)) is equal to

lim_(x rarr0)((sin x)/(x))^((1)/(x^(2))) is equal to

The value of lim_(xto0)2/(x^(3))(sin^(-1)x-tan^(-1)x)^(2//x^(3)) equals

The value of lim(xto0)2/(x^(3))(sin^(-1)x-tan^(-1)x)^(2//x^(2)) equals

The value of lim_(x rarr0)(sin^(-1)(2x)-tan^(-1)x)/(sin x) is equal to:

The value of lim_(xrarr 0) (e^x+log (1+x)-(1-x)^-2)/(x^2) is equal to