Home
Class 12
MATHS
Let f : R -> [4,oo) be an onto quadrati...

Let `f : R -> [4,oo)` be an onto quadratic function whose leading coefficient is1, such that `f'(x)+f'(2-x)=0` Then the value of, `int_1^3 (dx)/(f(x))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-negative continuous function defined on R such that f(x)+f(x+1/2)=3 , then the value of 1/1008 int_(0) ^(2015) f(x) dx is

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for all x in [0,a] . Then, the value of the integral int_(0)^(a) (1)/(1+e^(f(x)))dx is equal to

Let f(x) be a continuous function such that f(a-x)+f(x)=0 for x in [0, a] . Then int_(0)^(a)(dx)/(1+e^(f(x))) is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x) be a non-negative continuous function defined on R such that f(x)+ f(x+(1)/(2))=3 ,then the value of (1)/(1008)*int_(0)^(2016)f(x)dx

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in R . If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to