Home
Class 12
MATHS
Let f be a polynomial function such that...

Let `f` be a polynomial function such that for all real x `f(x^2+1)=x^4+5x^2+2`, then `int f(x)dx` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a polynomial function such that f(x^(2)+1)=x^(4)+5x^(2)+3 for all real x then the primitive of f(x) with respect to x is lx^(3)+mx^(2)+nx+k then ,3l+2m+4n is

Let f(x) be a polynomial function such that f(x). f(1/x) = f(x) + f(1/x). If f(4) = 65, then f^(')(x) =

Let f be a polynomial function such that f(3x)=f'(x);f''(x), for all x in R. Then : .Then :

Let f(x) be polynomial function of degree 2 such that f(x)gt0 for all x in R. If g(x)=f(x)+f'(x)+f''(x) for all x, then

Let f(x) be polynomial function of defree 2 such that f(x)gt0 for all x in R. If g(x)=f(x)+f'(x)+f''(x) for all x, then

Let f(x) be polynomial function of defree 2 such that f(x)gt0 for all x in R. If g(x)=f(x)+f'(x)+f''(x) for all x, then

Let f(x) be a polynomial with real coefficients such that f(0)=1 and for all x ,f(x)f(2x^(2))=f(2x^(3)+x) The number of real roots of f(x) is:

Let f(x) be a polynomial function: f(x)=x^(5)+ . . . . if f(1)=0 and f(2)=0, then f(x) is divisible by

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these

Let f(x) be a continuous function in R such that f(x) does not vanish for all x in R . If int_1^5 f(x)dx=int_-1^5 f(x)dx , then in R, f(x) is (A) an even function (B) an odd function (C) a periodic function with period 5 (D) none of these