Home
Class 9
MATHS
5sqrt(2)+4sqrt(2)...

5sqrt(2)+4sqrt(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

The positive square root of 5sqrt(2)+4sqrt(3) is

The value of int_(5)^(10)(sqrt(x+sqrt(20x-100))+sqrt(x-sqrt(20x-100)))dxis (1) 10sqrt(5)(2)5sqrt(5)(3)10sqrt(2)(4)8sqrt(2)

Let, f: X->y,f(x) = sin x + cos x + 2sqrt2 be invertible. Then which X->Y is not possible? a) [pi/4,(5pi)/4] ->[sqrt(2),3sqrt(2)] b) [-(3pi)/4,pi/4]->[sqrt(2),3sqrt(2)] c) [-(3pi)/4,(3pi)/4]->[sqrt(2),3sqrt(2)] d) none of these

Which of the following is true? (1) 10sqrt(3)>4sqrt(2)>5sqrt(5)

If the value of the determinant |{:(3sqrt(6),-4sqrt(2)),(5sqrt(3),x):}| is 26sqrt(6) , find the value of x .

sqrt(5sqrt(2)-2sqrt(12))=

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

Evaluate using binomial theorem: (i) (sqrt(2)+1)^(6) +(sqrt(2)-1)^(6) (ii) (sqrt(5)+sqrt(2))^(4)-(sqrt(5)-sqrt(2))^(4)

Cosines of angles made by a vector with X,Y axes are 3//5sqrt(2),4//5sqrt(2) respectively. If the magnitude of the vector is 10sqrt(2) then that vector is

Rationalize the denominator and simplify: (4sqrt3+5sqrt2)/( 4sqrt3+3sqrt2)