Home
Class 11
MATHS
If the roots of the equation x^3+bx^2+cx...

If the roots of the equation `x^3+bx^2+cx-1=0` be `alpha,beta,gamma` such that `beta/alpha=gamma/beta gt1` then b belongs to the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .

If alpha, beta, gamma are the roots of ax^(3) + bx^(2) + cx + d = 0 and |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| = 0, alpha != beta != gamma , then find the equation whose roots are alpha + beta - gamma, beta + gamma - alpha and gamma + alpha - beta

If alpha, beta, gamma are the roots of ax ^ (3) + bx ^ (2) + cx + d = 0 and det [[alpha, beta, gammabeta, gamma, alphagamma, alpha, beta]] = 0, alpha ! = beta! = gamma, alpha + beta-gamma, beta + gamma-alpha, and gamma + alpha-beta

If alpha,beta,gamma are the roots of the equation x^(3)+px^(2)+qx+r=0, then the value of (alpha-(1)/(beta gamma))(beta-(1)/(gamma alpha))(gamma-(1)/(alpha beta)) is

If alpha, beta, gamma are the roots of the equation x^(3) - 6x^(2) + 11x - 6 = 0 and if a = alpha^(2) + beta^(2) + gamma^(2) , b = alpha beta + beta gamma + gamma alpha and c = (alpha + beta) (beta + gamma)(gamma + alpha), then the correct inequality among the following is :

If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + r = n then the value of (alpha - 1/(beta gamma)) (beta -1/(gamma alpha)) (gamma-1/(alpha beta)) is:

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is