Home
Class 12
MATHS
sqrt(x^(2)+1)=log(x+sqrt(x^(2)+1))," sho...

sqrt(x^(2)+1)=log(x+sqrt(x^(2)+1))," show that "(x^(2)+1)(dy)/(dx)+xy-1=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x), show that (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x) , show that, (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

answeer the following : (i) if y sqrt(x^2+1)=log(sqrt(x^2+1)-x) , show that , (x^2+1) dy/dx +xy+1=0

If ysqrt(x^2+1)=log(sqrt(x^2+)1-x), show that(x^2+1)(dy)/(dx)+x y+1=0

If log(sqrt(1+x^(2))-x)=ysqrt(1+x^(2)) , then show that (1+x^(2))(dy)/(dx)+xy+1=0 .

If sqrt(x^2 +1) y = log(sqrt(x^2+1)-x) , then show that (x^2 +1) dy/dx + xy + 1=0

If y sqrt(x^(2)+1)=log{sqrt(x^(2)+1)-x} then (x^(2)+1)(dy)/(dx)+xy+1=(a)0(b)1(c)2(d) non of these

If log (sqrt(1 + x^2) - x) = y sqrt(1 + x^2) , show that (1 - x^2) (dy)/(dx) + xy + 1 = 0