Home
Class 12
MATHS
If the roots of the quadratic equation x...

If the roots of the quadratic equation `x^2 +px + q = 0` are `tan 30^@` and `tan 15^@` respectively then the value of `2+q-p` is

A

2

B

3

C

0

D

1

Text Solution

Verified by Experts

`x^(2)+px+q=0`
Sum of the roots `=tan30^(@)+tan15^(@)=-p`
Product of the roots `=tan30^(@).tan 15^(@)=q`
`tan45^(@)=tan(30^(@)+15^(@))=(tan 30^(@)+tan 15^(@))/(1-tan30^(@).tan15^(@))`
`implies1=(-p)/(1-q)implies-p=1-q`
`impliesq-p=1`
`:.2+q-p=3`
Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots the quadratic equation x^(2) + px + q = 0 are tan 30^(@) and tan 15^(@) , respectively, then the value of 2 + q - p is :

If the roots of the quadratic equation x^(2)+px+q=0 are tan 30^(@)" and "tan15^(@) , respectively then the value of 2+q-p is

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan15^0, respectively, then find the value of q-p .

If the roots of the quadratic equation x^(2)+px+q=0 are tan30^(@) and tan 15^(0) respectively,then find the value of 2+q-p

If the roots of the quadratic equation x^(2)+p x+q=0 are tan 30^(circ) and tan 15^(circ) respectively, then the value of 2+q-p is

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan15^0, respectively, then find the value of 2+q-pdot

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0 and tan15^0, respectively, then find the value of 2+q-pdot

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan15^0, respectively, then find the value of 2+q-pdot

If the roots of the quadratic equation x^2+p x+q=0 are tan30^0a n dtan15^0, respectively, then find the value of 2+q-pdot

If the roots of the equadratic equation x^(2) + px + q = 0 " are " tan23^(@) "and" tan22^(@), then find the value of q - p .