Home
Class 12
MATHS
If y=ln(e^(mx)+e^(-mx)), then what is (d...

If `y=ln(e^(mx)+e^(-mx))`, then what is `(dy)/(dx)` at x = 0 equal to ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ln(e^(mx)+e^(-mx)) . Then what is the value of (dy)/(dx) at x=0 ?

If y=log(e^(x^2)) , then dy/dx=?

If y = e^(log x ) , then ( dy)/(dx)

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=e^(log_(e)x)," then "(dy)/(dx)=

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If y=ae^(mx)+be^(-mx) , then (d^2y)/dx^2-m^2y is equals to (a). m^2(ae^(mx)-be^(mx)) (b).1 (c).0 (d).None of these

If x log_(e) (log _(e) x) - x^(2) + y^(2) = 4 (y gt 0) , then (dy)/(dx) at x = e is equal to