Home
Class 12
MATHS
tan^-1[(cos x)/(1+sin x)] is equal to...

`tan^-1[(cos x)/(1+sin x)]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^-1((1+cos x)/sin x)

tan^(-1)((1-cos x)/(sin x))

(d)/(dx){tan^(-1)((cos x)/(1+sin x))} equals 1/2 (b) -1/2(c)1(d)-1 equals 1/2 (b)

tan^(-1) ((1-cos x)/(sin x))

(d)/(dx){tan^(-1)((cos x)/(1+sin x))} equal (1)/(2)(b)x(c)(1-x^(2))/(1+x^(2)) (d) 1

The derivative of tan^(-1)[(sin x)/(1+cos x)] w.r.t tan^(-1) [(cos x)/( 1+ sin x)] is

cos[tan^(-1){sin(cot^(-1)x)}] is equal to

tan(cos^-1 x) is equal to

tan^(-1)((sin x)/(1+cos x))