Home
Class 11
MATHS
If X={8^n-7n-1,n in N}and Y={49(n-1);nin...

If X=`{8^n-7n-1,n in N}`and Y=`{49(n-1);ninN}`, then prove that X is a subset of Y

Promotional Banner

Similar Questions

Explore conceptually related problems

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1,n in N} and Y={49(n-1):n inN}, then prove that X sube Y .

If X={8^(n)-7n-1:n in N) and Y={49(n-1): n in N}, then

If X={8^n -7n-1 : n in N} and Y={49 (n-1) | n in N}, then

if X={8^(n)-7n-1:n in N) and Y={49(n-1): n in N}, then

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1:n in N} and {9(n-1):n in N} , the prove that X sub Y .

If X={4^(n)-3n-1,ninN}andY={9(n-1):ninN}," then "XcapY=