Home
Class 12
MATHS
If y=x^(int1^x ln t dt), find (dy)/(dx) ...

If `y=x^(int_1^x ln t dt)`, find `(dy)/(dx)` at x=e.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x int_(1)^(x)ln tdt, find (dy)/(dx) at x=e

If y=e^(x) log (sin 2x), find (dy)/(dx) .

If y=int_1^(x^3)dt/(1+t^4), find dy/dx.

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x=t^(2) and y=log t , find (dy)/(dx) .

If f'(1)=2 and y=f((log)_(e)x), find (dy)/(dx) at x=e .

If y=e^log x , find dy/dx

If x=int_(0)^(y)sqrt(1+t^(2))dt, find (dy)/(dx)

If x= t log t,y = (log t)/t , find (dy)/(dx) when t=1