Home
Class 11
MATHS
" Prove that "sin alpha+sin beta+sin gam...

" Prove that "sin alpha+sin beta+sin gamma-sin(alpha+beta+gamma)=4sin(alpha+beta)/(2)sin(beta+gamma)/(2)sin(gamma+alpha)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin((alpha+beta)/2)sin((beta+gamma)/2)sin((gamma+alpha)/2)dot

Show that sinalpha+sinbeta+singamma-sin(alpha+beta+gamma)=4sin ((alpha+beta)/2) sin((beta+gamma)/2)sin((gamma+alpha)/2)

Prove the following: "sin" alpha+"sin" beta+"sin" gamma-"sin"(alpha+beta+gamma)=4"sin"(alpha+beta)/(2)"sin"(beta+gamma)/(2)"sin"(gamma+alpha)/(2)

"Prove that : " sin alpha + sin beta + sin gamma - sin ( alpha + beta + gamma) =4 "sin" (alpha+beta)/2 "sin"(beta + gamma)/2 "sin"(gamma+alpha)/2

Prove the following : sin alpha+ sin beta+ sin gamma - sin (alpha+beta+gamma)= 4sin frac (alpha+beta)(2) sin frac (beta+gamma)(2) sin frac (gamma+alpha)(2) .

sin 2 alpha + sin 2 beta + sin 2 gamma - sin2(alpha + beta + gamma )=

cos alpha sin (beta-gamma)+cos betasin (gamma-alpha+cos gamma sin (alpha-beta)=

prove that | (sin alpha, sin beta, sin gamma), (cos alpha, cos beta, cos gamma), (sin 2alpha, sin 2beta, sin 2gamma) | = 4sin (1/2) (beta-gamma) * sin (1/2) (gamma-alpha) * sin (1/2) (alpha-beta) xx {sin (beta + gamma) + sin (gamma + alpha) + sin (alpha + beta)}.

Let alpha,beta and gamma are the angles of a right angle triangle,then the value of sin alpha*sin beta*sin(alpha-beta)+sin beta*sin gamma*sin(beta-gamma)+sin gamma*sin alpha*sin(gamma-beta)+sin(beta-gamma)*sin(gamma-gamma)*sin(gamma-

cos alpha sin (beta-gamma)+cos beta sin (gamma-alpha) +cos gamma(sin alpha-beta)=