Home
Class 11
MATHS
If w=z/[z-(1/3)i] and |w|=1, then find ...

If `w=z/[z-(1/3)i]` and `|w|=1,` then find the locus of `z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If w=z/[z-1/(3i)] and |w|=1, then find the locus of z

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If w= z/(z-i1/3) and |w|=1,then z lies on:

If w=(z)/(z-(1)/(3)i) and |w|=1 , then z lies on

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

If omega=(z)/(z-(1/3)i)" and "|omega|=1 , then z lies on