Home
Class 11
PHYSICS
Two sinusoidal waves combining in a medi...

Two sinusoidal waves combining in a medium are described by the equations
`y_1 = (3.0 cm) sin pi (x+ 0.60t)`
and `y_2 = (3.0 cm) sin pi (x-0.06 t)`
where, x is in centimetres and t is in seconds. Determine the maximum displacement of the medium at
(a)x=0.250 cm,
(b)x=0.500 cm and
(c) x=1.50 cm.
(d) Find the three smallest values of x corresponding to antinodes.

Promotional Banner

Similar Questions

Explore conceptually related problems

The two individual wave functions are y_(1)=(5" cm")sin (4x-t)and y_(2)=(5" cm") sin (4x + t) ltbrrgt where, x and y are in centimetres. Find out the maximum displacement of the motion at x = 2.0 cm.

A particle is subjected to two simple harmonic motions given by x_(1) = 2.0sin (100 pi t) and x_(2) = 2.0sin (120pi t + pi //3) where, x is in cm and t in second. Find the displacement of the particle at (a) t = 0.0125 , (b) t = 0.025 .

A particle is subjected to two simple harmonic motions given by x_(1) = 2.0sin (100 pi t) and x_(2) = 2.0sin (120pi t + pi //3) where, x is in cm and t in second. Find the displacement of the particle at (a) t = 0.0125 , (b) t = 0.025 .

Two sinusoidal waves in a string are defined by the function y_(1)=(2.00 cm) sin (20.0x-32.0t) and y_(2)=(2.00 cm) sin (25.0x-40.0t) where y_(1), y_(2) and x are in centimetres and t is in seconds. (a). What is the phase difference between these two waves at the point x=5.00 cm at t=2.00 s ? (b) what is the positive x value closest to the original for which the two phase differ by +_ pi at t=2.00 s? (That os a location where the two waves add to zero.)

Two sinusoidal waves in a string are defined by the function y_(1)=(2.00 cm) sin (20.0x-32.0t) and y_(2)=(2.00 cm) sin (25.0x-40.0t) where y_(1), y_(2) and x are in centimetres and t is in seconds. (a). What is the phase difference between these two waves at the point x=5.00 cm at t=2.00 s ? (b) what is the positive x value closest to the original for which the two phase differ by +_ pi at t=2.00 s? (That os a location where the two waves add to zero.)

The displacement wave in a string is y=(3 cm)sin6.28(0.5x-50t) where x is in centimetres and t in seconds. The velocity and wavelength of the wave is :-

The displacement wave in a string is y=(3 cm)sin6.28(0.5x-50t) where x is in centimetres and t in seconds. The velocity and wavelength of the wave is :-