Home
Class 12
MATHS
In triangle ABC, prove that a^2sin(B-C)=...

In `triangle ABC`, prove that `a^2sin(B-C)=(b^2-c^2)sinA`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that sinA=sin(B+C)

If in Delta ABC , Prove that, a^2 sin(B-C)= (b^2-c^2)sinA

In any triangle ABC, prove that : (a sin(B-C))/(b^2-c^2)= (b sin (C-A))/(c^2-a^2)= (c sin (A-B))/(a^2-b^2) .

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

For any triangle ABC, prove that sin(B-C)/sin(B+C)=(b^2-c^2)/(a^2)

In any triangle ABC prove that (a^(2)sin(B-C))/(sinA)+(b^(2)sin(C-A))/(sinB)+(c^(2)sin(A-B))/(sinC)=0

In any triangle ABC, prove that (a^(2)sin(B-C))/(sin B + sinC) + (b^(2)sin(C-A))/(sinC + sinA) +(c^(2)sin(A-B))/(sinA + sinB)=0

In a triangle ABC, prove that :a sin((A)/(2)+B)=(b+c)sin((A)/(2))

In any triangle A B C , prove that: (a^2sin(B-C))/(sinB+ sin C)+(b^2sin(C-A))/(sinC+ sin A)+(c^2sin(A-B))/(sinA+ sin B)=0

In any triangle ABC, prove that: (a^(2)sin(B-C))/(sin B+sin C)+(b^(2)sin(C-A))/(sin C+sin A)+(c^(2)sin(A-B))/(sin A+sin B)=0