Home
Class 12
MATHS
Q. prove that int (e^(n+1/n) + n(1-1/n^2...

Q. prove that `int (e^(n+1/n) + n(1-1/n^2)*e^(n+1/n))dn = n*e^(n+1/n)+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

int sqrt((1-n)/(1+n))dn

Prove that lim_(n->oo)(1+1/n)^n=e

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

Prove that: I_n=int_0^oox^(2n+1) e^ (-x^2) dx=(n !)/2,n in N .

lim_ (n rarr oo) [(e ^ (1 / n) + e ^ (2 / n) + e ^ (3 / n) + ... + e ^ (n / n)) / (n)]

lim_ (n rarr oo) [(e ^ (1 / n) + e ^ (2 / n) + e ^ (3 / n) + ... + e ^ (n / n)) / (n)]

lim_ (n rarr oo) [(e ^ (1 / n) + e ^ (2 / n) + e ^ (3 / n) + ...... + e ^ (n / n)) / (n )]

Prove that: I_(n)=int_(0)^(oo)x^(2n+1)e^(-x^(2))dx=(n!)/(2),n in N

Show that int x ^(n) . e ^(-x) dx= -x^(n) e ^(-x) +n int x ^(n-1) . e ^(-x) dx