Home
Class 14
MATHS
[(5sqrt(7)+sqrt(7))+)4sqrt(7)+8sqrt(7))]...

`[(5sqrt(7)+sqrt(7))+)4sqrt(7)+8sqrt(7))]-(19)^(2)=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

(5sqrt(7)+2sqrt(7))(6sqrt(7)+3sqrt(7))=?

(sqrt(7)-sqrt(5))^3 - (sqrt(7)+sqrt(5))^3

Simplify (1)/(3 - sqrt(8)) - (1)/(sqrt(8) - sqrt(7)) + (1)/(sqrt(7) - sqrt(6)) - (1)/(sqrt(6) - sqrt(5)) + (1)/(sqrt(5) - 2)

Let T = (1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7)) +(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)+2) then-

a) sqrt7 sqrt7 = b) sqrt7 + sqrt7 =

( Show that: )/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7))-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5

(1)/(3-sqrt(8))-(1)/(sqrt(8)-sqrt(7))+(1)/(sqrt(7)-sqrt(6))-(1)/(sqrt(6)-sqrt(5))+(1)/(sqrt(5)-2)=5