Home
Class 11
MATHS
sqrt(i)-sqrt(-i)=sqrt(2)...

`sqrt(i)-sqrt(-i)=sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sqrti+sqrt(-i)=sqrt2

Show that one value of (sqrt(i)+sqrt(-)i) is sqrt(2)

((3+i sqrt(3))(3-i sqrt(3)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

((sqrt(3)+i sqrt(5))(sqrt(3)-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2))

Express the following expression in the form of a+ib qquad ((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express the following expression in the form of a+ib((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

Express each one of the following in the standard form a+ib:((3+i sqrt(5))(3-i sqrt(5)))/((sqrt(3)+sqrt(2)i)-(sqrt(3)-i sqrt(2)))

(i) Rationalise (sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2))

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)