Home
Class 12
MATHS
Let I(n)= int(0)^(1)(x ln x)^(n)dx, if I...

Let `I_(n)= int_(0)^(1)(x ln x)^(n)dx,` if `I_(4)=k int_(0)^(1)x^(4)(ln x)^(3)dx,` then `|[k]|` is equal to ([.] denotes greatest integer function).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

If f(x)=[|x|, then int_(0)^(100)f(x)dx is equal to (where I.] denotes the greatest integer function)

The value of int_(0)^([x])(2^(x))/(2^([x]))dx is equal to (where,[.] denotes the greatest integer function)

If I=int_(3)^(4)(1)/((log x)^((1)/(3)))dx, then

Evaluate: int[(log x)/(3)]dx, where [.] denotes the greatest integer function.

int_(0)^(4)x [x] dx= ( where [.] denotes greatest integer function

int_(0)^(1)log(3+x)dx

int_(3)^(10)[log[x]]dx is equal to (where [.] represents the greatest integer function)