Home
Class 12
MATHS
The value of definite integral int(1/3)^...

The value of definite integral `int_(1/3)^(2/3)(ln x)/(ln(x-x^(2)))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int x.2^(ln(x^(2)+1))dx is equal to

The value of definite integral int_(1)^(e)(dx)/(sqrt(x^(2)ln x+(x ln x)^(2))) is

If f(x) is a continuous function satisfying f(x)=f(2-x) , then the value of the integral I=int_(-3)^(3)f(1+x)ln ((2+x)/(2-x))dx is equal to

The value of the definite integral int_(-1)^(1)(1+x)^(1//2)(1-x)^(3//2)dx equals

int_(1)^(3)(log x)/(x)dx

The value of the definite integral int_(1)^(e)((x+1)e^(x).ln x)dx is

The value of the definite integral int_(0)^(pi//3) ln (1+ sqrt3tan x )dx equals

Evaluate the following definite integral: int_(1)^(3)(log x)/((x+1)^(2))dx

The value of definite integral I=int_(-1/2)^(1/2)sin^(2)x log((1-x)/(1+x))dx is