Home
Class 12
MATHS
Lim(x rarr oo) 2^(x-1)(sin (pi/(2^(x)))+...

`Lim_(x rarr oo)` `2^(x-1)(sin (pi/(2^(x)))+tan(pi/(2^(x))))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (x rarr oo) x ^ (2) sin ((pi) / (x)) =

lim_(x rarr 1) (x-1) tan((pi x)/2)

lim_(x rarr(pi)/(2))[x tan x-((pi)/(2))sec x] is equal to

lim_ (x rarr1) (2-x) ^ (tan ((pi x) / (2)))

lim_(x rarr0)(sin(pi sin^(2)x))/(x^(2)) is equal to

The value of lim_(x rarr(pi)/(5))(2sin^(-1)x-(pi)/(2))/(1-2x^(2)) is equal to

lim_(x rarr1)(sin^(-1)x)/(tan(pi(x)/(2)))

lim_(x rarr 1) (1-x) tan((pi x)/2)

lim_ (x rarr1) (1-x ^ (2)) / (sin pi x)

lim_ (x rarr1) (2-x) ^ (tan pi (x) / (2))