Home
Class 12
MATHS
LatA = [a(ij)](3xx 3). If tr is arithmet...

Lat`A = [a_(ij)]_(3xx 3).` If tr is arithmetic mean of elements of rth row and `a_(ij )+ a_( jk) + a_(ki)=0` holde for all `1 le i, j, k le 3.` ` sum_(1lei) sum_(jle3) a _(ij)` is not equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [a_(ij)]_(3xx 3) If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 hold for all 1 le i, j, k le 3. sum_(1lei) sum_(jle3) a _(ij) is not equal to

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

Lat A = [a_(ij)]_(3xx 3). If tr is arithmetic mean of elements of rth row and a_(ij )+ a_( jk) + a_(ki)=0 holde for all 1 le i, j, k le 3. Matrix A is

A is a matrix of 3xx3 and a_(ij) is its elements of i^(th) row and j^(th) column. If a_(ij)+a_(jk)+a_(ki)=0 holds for all 1 le i, j, kle 3 then

A=[a_(ij)]_(3xx3) is a square matrix so that a_(ij)=i^(2)-j^(2) then A is a

If A=[a_(ij)]_(2×3) such that a_(ij)=i+j then a 11=

Let A=[[3,2,1],[1,-3,0],[1,2,0]] .If a_(ij) is an element of A and c_(ij) is the cofactor of a_(ij) for all i,j, then sum_(ilej,jle3)(a_(ij)c_(ij))=lambda , then (lambda)/(3) equals