Home
Class 11
MATHS
If t a nalpha=x+1,tanbeta=x-1, show that...

If `t a nalpha=x+1,tanbeta=x-1,` show that `2cot(alpha-beta)=x^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha=x+1,tan beta=x-1, show that 2cot(alpha-beta)=x^(2)

If tan alpha=x+1,tan beta=x-1, show that 2cot(alpha-beta)=x^(2)

If tan alpha=x+1,tan beta=x-1, show that 2cot(alpha-beta)=x^(2)

If cot alpha cot beta=2 show that (cos(alpha+beta))/(cos(alpha-beta))=1/3

If cot alpha cot beta=2 , show that (cos (alpha+beta))/(cos (alpha-beta))=(1)/(3)

If cot alpha cot beta=2 , show that (cos (alpha+beta))/(cos (alpha-beta)) = 1/3 .

If t a nalpha=x/(x+1) and t a nbeta=1/(2x+1) , then alpha+beta is equal to (a) pi//2 (b) pi//3 (c) pi//6 (d) pi//4

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

if tanalpha -tanbeta =x and cotbeta-cotalpha =y prove that cot(alpha-beta) = (x+y)/(xy)