Home
Class 10
MATHS
In finding lim(x rarr a) f(x), we repla...

In finding `lim_(x rarr a) f(x)`, we replace x by `(1)/(n)`, then the limit becomes _____.

Promotional Banner

Similar Questions

Explore conceptually related problems

If ‘f' is an odd function and if lim_(x rarr 0) f(x) exists, prove that this limit must be zero.

Find the limits: lim_(x rarr 0) (sin x +cos x)^(1/x)

If lim_(x rarr a)[f(x)+g(x)]=2 and lim_(x rarr a)[f(x)-g(x)]=1, then find the value of lim_(x rarr a)f(x)g(x)

If f is an odd function and if lim_(x rarr0)f(x) exists. Prove that this limit must be zero.

Find the limits: lim_(x rarr 0) (sin x/x)^(1/x)

If lim_(x rarr4)(f(x)-5)/(x-2)=1 then lim_(x rarr4)f(x)=

Evaluate the following limit : lim_(x rarr 0)(e^(tan x)-1)/(tan x) .

If lim_(x rarr0)[1+x+(f(x))/(x)]^((1)/(x))=e^(3), then find the value of 1n(lim_(x rarr0)[1+(f(x))/(x)]^((1)/(x)))is=-

If f'(x)=f(x) and f(0)=1 then lim_(x rarr0)(f(x)-1)/(x)=