Home
Class 12
MATHS
अवकल समीकरण cosydy+cosxsinydx=0 cosydy+c...

अवकल समीकरण `cosydy+cosxsinydx=0` `cosydy+cosxsinydx=0`
दिया है : `x=(pi)/(2)," यदि "y=(pi)/(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of the differential equation cos ydy+cosxsinydx=0 given that y=pi//2 , when x=pi//2.

Find the solution of the differential equation cos ydy+cosxsinydx=0 given that y=pi//2 , when x=pi//2.

Solve the following differential equations: cosydy+cosxsinydx=0

The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(pi/2-y) is zero if x=0 (b) y=0 x=y (d) npi+y-pi/4(n in Z)

The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(pi/2-y) is zero if (A) x=0 (B) y=0 (C) x=y (D) npi+y-pi/4(n in Z)

The value of cosy cos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(pi/2-y) is zero if (A) x=0 (B) y=0 (C) x=y (D) npi+y-pi/4(n in Z)

The value of cosycos(pi/2-x)-cos(pi/2-y)cosx+sinycos(pi/2-x)+cosxsin(pi/2-y) is zero if (A) x=0 (B) y=0 (C) x=y (D) npi+y-pi/4(n in Z)

If x in [0,2pi]" then "y_(1)=(sin x)/(|sin x|), y_(2)=(|cos x|)/(cos x) are identical functions for x in : I. (0,pi/2)" "II. (pi/2, pi)," "III. (pi,(3pi)/(2))," "IV. ((3pi)/(2),2pi)

If x in [0,2pi]" then "y_(1)=(sin x)/(|sin x|), y_(2)=(|cos x|)/(cos x) are identical functions for x in : I. (0,pi/2)" "II. (pi/2, pi)," "III. (pi,(3pi)/(2))," "IV. ((3pi)/(2),2pi)