Home
Class 12
MATHS
Suppose g(x) is a real valued differenti...

Suppose `g(x)` is a real valued differentiable function satisfying `g'(x) + 2g(x) gt 1.` Then show that `e^(2x)(g(x)-1/2)` is an increasing function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose g(x) is a real valued differentiable function satisfying g'(x)+2g(x)>1. Then show that e^(2x)(g(x)-(1)/(2)) is an increasing function.

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then g(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g (x) be a differentiable function satisfying (d)/(dx){g(x)}=g(x) and g (0)=1 , then intg(x)((2-sin2x)/(1-cos2x))dx is equal to

Let g:[1,6]rarr[0,) be a real valued differentiable function satisfying g'(x)=(2)/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed ln2(b)ln6 6ln2(d)2ln6

Let g\ :[1,6]->[0,\ ) be a real valued differentiable function satisfying g^(prime)(x)=2/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed ln2 (b) ln6 6ln2 (d) 2\ ln\ 6

Let g\ :[1,6]->[0,\ ) be a real valued differentiable function satisfying g^(prime)(x)=2/(x+g(x)) and g(1)=0, then the maximum value of g cannot exceed

Let g(x) be a function satisfying g(0)=2,g(1)=3,g(x+2)=2g(x)-g(x+1), then find g(5)

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

Let g(x) be a function satisfying g(0) = 2, g(1) = 3, g(x+2) = 2g(x+1), then find g(5).

A differentiable function y = g(x) satisfies int_0^x(x-t+1) g(t) dt=x^4+x^2 for all x>=0 then y=g(x) satisfies the differential equation