Home
Class 12
MATHS
tan^(-1)((2mn)/(m^2-n^2))+tan^(-1)((2pq)...

`tan^(-1)((2mn)/(m^2-n^2))+tan^(-1)((2pq)/(p^2-q^2))=tan^(-1)((2MN)/(M^2-N^2))` where `M=mp-nq, N=np+mq`,

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(m-1)^ntan^(-1)((2m)/(m^4+m^2+2)) is equal to (a) tan^(-1)((n^2+n)/(n^2+n+2)) (b) tan^(-1)((n^2-n)/(n^2-n+2)) (c) tan^(-1)((n^2+n+2)/(n^2+n)) (d) none of these

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that: sum_(m=1)^ntan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that : sum_(m=1)^n\ \ \ tan^(-1)((2m)/(m^4+m^2+2))=tan^(-1)((n^2+n)/(n^2+n+2))

Prove that: sum_(m=1)^(n)tan^(-1)((2m)/(m^(4)+m^(2)+2))=tan^(-1)((n^(2)+n)/(n^(2)+n+2))