Home
Class 12
MATHS
If A=([a(i j)])(3xx3), such that a(i j)...

If `A=([a_(i j)])_(3xx3),` such that `a_(i j)={2,i=j and 0,i!=j ,t h e n1+(log)_(1//2)(|A|^(|a d jA|))` is equal to a.`-191` b.`-23` c.`0` d. does not exists

Promotional Banner

Similar Questions

Explore conceptually related problems

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))

If A=([a_(i j)])_(3x3') such that a_(i j)={2,,i=j0,i!=j ,t h e n |A|=8 (b) |A d jdotA|=32 C+log_(1/2)(|A|^(|A d jdotA|))=-191 |A d jdot(A d jdotA)|=12^(12)

If A=([a_(i j)])_(3x3') such that a_(i j)={2,,i=j0,i!=j ,t h e n |A|=8 (b) |A d jdotA|=32 C+log_(1/2)(|A|^(|A d jdotA|))=-191 |A d jdot(A d jdotA)|=12^(12)

If A=[a_(i j)] is a 2xx2 matrix such that a_(i j)=i+2j , write A .

if A=[a_(ij)]_(2*2) where a_(ij)={i+j , i!=j and i^2-2j ,i=j} then A^-1 is equal to

If matrix A=[a_(ij)]_(2X2') where a_(ij)={[1,i!=j0,i=j]}, then A^(2) is equal to

If matrix A=([a_(ij)])_(2xx2), where a_(ij)={1,quad if quad i!=j0,quad if i+j, then A^(2) is equal to I( b) A(c)O(d)I

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=[a_(ij)]_(2X2) , where a_(ij)={[1,i!=j],[0,i=j]}, then A^2 is equal to

If matrix A=([a_(i j)])_(2xx2) , where a_(i j)={1,\ if\ i!=j0,\ if\ i=j , then A^2 is equal to I (b) A (c) O (d) I