Home
Class 11
MATHS
The points P,Q,R are taken on ellipse x...

The points P,Q,R are taken on ellipse `x^2/a^2+y^2/b^2=1` with eccentric angles `theta, theta+a, theta+2a`, then area of ,`DeltaPQR` is independent of

Promotional Banner

Similar Questions

Explore conceptually related problems

The points P,Q,R are taken on ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with eccentric angles theta,theta+a,theta+2a, then area of ,Delta PQR is independent of

P and Q are two points on the ellipse x^2/a^2+y^2/b^2=1 with eccentric angles theta_1 and theta_2 . Find the equation of the locus of the point of intersection of the tangents at P and Q if theta_1+theta_2=pi/2 .

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1' at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 (b>a) at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If omega is one of the angles between the normals to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 (b>a) at the point whose eccentric angles are theta and pi/2+theta , then prove that (2cotomega)/(sin2theta)=(e^2)/(sqrt(1-e^2))

If omega is one of the angles between the normals to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 at the point whose eccentric angles are theta and (pi)/(2)+theta, then prove that (2cot omega)/(sin2 theta)=(e^(2))/(sqrt(1-epsilon^(2)))

If x/a+y/b=sqrt(2) touches the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1 , then its eccentric angle 'theta' is equal to

The slop of the tangent to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2)) =1 at the point (a cos theta, b sin theta) - is