Home
Class 12
MATHS
Number of points in [0, pi], where f(x)=...

Number of points in `[0, pi]`, where `f(x)=[(xtanx)/(sinx+cosx)]` is non-differentiable is/are (where [.] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

Number of points in [0,pi], where f(x)=[(x tan x)/(sin x+cos x)] is non-differentiable is/are (where [.] denotes the greatest integer function)

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)