Home
Class 8
MATHS
" Solve ":log(3)(sqrt(x)+|sqrt(x)-1|)=lo...

" Solve ":log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)sqrt(x)+log_(2)sqrt(x)=4

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

( Solve )/(sqrt(x+3-4sqrt(x-1)))+sqrt(x+8-6sqrt(x-1))=1

Solve for x: log_(sqrt3) (x+1) = 2

Solve : 3^((log_(9)x))xx2=3sqrt(3)

If x+y = z , then prove that 1/(log_((sqrt(z)-sqrt(y)))(x)) + 1/(log_((sqrt(z)+sqrt(y)))(x)) = 1 .

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt(3)))(sqrt(x^(2)+1)+x)+log_((2-sqrt(3)))(sqrt(x^(2)+1)-x)=3

int ((log(1+6sqrt(x)))/(3sqrt(x)+sqrt(x))+(1)/(3sqrt(x)+4sqrt(x)))dx

Find the sum of the squares of all the real solution of the equation 2log_((2+sqrt3)) (sqrt(x^2+1)+x)+log_((2-sqrt3)) (sqrt(x^2+1)-x)=3