Home
Class 14
MATHS
If log 2=x ,\ log 3=y\ an d \ log7=z , t...

If `log 2=x ,\ log 3=y\ an d \ log7=z ,` then the value of `log(4*root(3)63)` is a. `2x+2/3y-1/3z` b. `2x+2/3y+1/3z` c. `2x-2/3y+1/3z` d. `-2x+2/3y+1/3z`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log2=x,log3=y backslash and backslash log7=z, then the value of log(4*root(3)(63)) is a.2x+(2)/(3)y-(1)/(3)z b.2x+(2)/(3)y+(1)/(3)z c.2x-(2)/(3)y+(1)/(3)zd-2x+(2)/(3)y+(1)/(3)z

IF x = log_(2a)a, y = log_(3a) 2a , z = log_(4a)3a , then the value of xyz + 1 is

If log x = (log y) / (2) = (log z) / (5), thtenx ^ (4) y ^ (3) z ^ (- 2) =

If x = log 0.6, y = log 1.25 and z = log 3 - 2 log 2 , find the values of : (i) x + y - z (ii) 5^(x + y - z)

What is the value of log_(y)x^(5)log_(x)y^(2)log_(z)z^(3) ?

x+2y+z=7 x+3z=11 2x-3y=1

If (log^(2)-2(x+1)+log^(2)-2(log_(3)(y))+log^(2)-2(1+log_(2)(z))=0, then the value of (x+y+z) is -