Home
Class 12
MATHS
" In परि "omega" समीकरण "x^(3)-1=0" का ए...

" In परि "omega" समीकरण "x^(3)-1=0" का एक अवास्तविक मूल हो,तो "|[1,omega,omega^(2)],[omega,omega^(2),1],[omega^(2),1,omega]|=

Promotional Banner

Similar Questions

Explore conceptually related problems

|[1,omega,omega^2] , [omega, omega^2,1] , [omega^2,1,omega]|=0

Find the value of : |(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)|

find determinant of |(1, omega, omega^(2)),(omega, omega^(2),1),(omega^(2),1,omega)|=

|[omega+omega^(2),1,omega],[omega^(2)+1,omega^(2),1],[1+omega,omega,omega^(2)]|

Solve the following : [[x+1,omega,omega^2],[omega,x+omega^2,1],[omega^2,1,x+omega]] =0

Find the value of : |(1,omega^3,omega^2),(omega^3,1,omega),(omega^2,omega,1)|

If omega=-(1)/(2)+i (sqrt(3))/(2) , the value of [[1, omega, omega^(2) ],[ omega, omega^(2), 1],[ omega^(2),1, omega]] is

Evaluate the following determinants. [[1,omega,omega^2],[omega,omega^2,1],[omega^2,1,omega]]