Home
Class 11
MATHS
In triangle ABC if (sinA)/7=(sinB)/6=(si...

In triangle ABC if `(sinA)/7=(sinB)/6=(sinC)/5`, show that `cosA:cosB:cosC=7:19:25`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC If sinA : sinB: sinC=4:5:6,then prove that cos A :cosB: cosC=12:9:2.

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In triangle ABC, (sinA+sinB+sinC)/(sinA+sinB-sinC) is equal to

In a triangle ABC, the value of sinA+sinB+sinC is

If in a triangle ABC , cosA=(sinB)/(2sinC) then the triangle ABC , is

In a triangle ABC, (cosB+cosC)/(1-cosA) =

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is