Home
Class 10
MATHS
1times9x^(2)-6b^(2)x-(a^(4)-b^(4))=0...

1times9x^(2)-6b^(2)x-(a^(4)-b^(4))=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve by factorization: 9x^(2)-6b^(2)x-(a^(4)-b^(4))=0

Solve the following equation by using factorisation method: 9x^(2)-6b^(2)x-(a^(4)-b^(4))=0.

solve for x:9x^(2)-6b^(2)x-(a^(4)-b^(4))=0

Solve by factorization: 9x^2-6b^2x-(a^4-b^4)=0

Find the roots of the following quadratic equations :- 9x^2-6a^2x+(a^4-b^4)=0 .

Factorize each of the following expressions: x^(4)-625(2)x^(4)-149(a-b)^(2)-25(a+b)^(2) (4) x-y-x^(2)+y^(2)16(2x-1)^(2)-25y^(2)(6)4(xy+1)^(2)-9(x-1)^(2)

Factorize each of the following expressions: 36l^(2)-(m+n)^(2)(2)25x^(4)y^(4)-1a^(4)-(1)/(b^(4))(4)x^(3)-144x(x-4y)^(2)-625(6)9(a-b)^(2)-100(x-y)^(2)

Factorize each of the following algebraic expressions: 9a^(4)-24a^(2)b^(2)+16b^(4)-25616-a^(6)+4a^(3)b^(3)-4b^(6)a^(2)-2ab+b^(2)-c^(2)(4)x^(2)+2x+1-9y^(2)a^(2)+4ab+3b^(2)(6)96-4x-x^(2)

Find each of the following products: (i) 5a^(2) b^(2) xx (3a^(2) - 4ab + 6b^(2)) (ii) (-3x^(2)y) xx (4x^(2) y - 3xy^(2) + 4x - 5y)

If (1+x+x^(2))^(n)=b_(0)+b_(1)x+b_(2)x^(2)+….+b_(2n)x^(2n) then prove that If n=25, b_(0)-b_(2)+b_(4)-b_(6)+….-b_(2n)=0