Home
Class 11
MATHS
Property (iv) If ^nCx=^nCy; then either ...

Property (iv) If `^nC_x=^nC_y`; then either x=yx=y or x+y=nx+y=n (v) r.nC_r=n. (n-1)C_(r-1)r.nC_r=n. (n-1)C_(r-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that n.^(n-1)C_(r-1)=(n-r-1) ^nC_(r-1)

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r

If ""^nC_r= ""^nC_s , then n is:

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Show that ^nC_r+2. ^nC_(r-1)+ ^nC_(r-2)= ^(n+2)C_r

Show that nC_(r)=(n-r+1)/(r)*(nC_(r-1))

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

Prove that ^nC_(r)+^(n-1)C_(r)+...+^(r)C_(r)=^(n+1)C_(r+1)

Prove that nC_r+3.nC_(r-1)+3nC_(r-2)+nC_(r-3)=(n+3)C_r