Home
Class 14
MATHS
[" For the equation "1-2x-x^(2)=tan^(2)(...

[" For the equation "1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y)],[" a) exactly one value of "x" exists "quad " b) exactly two values of "x" exists "],[" c) "y=-1+n pi+pi/4,n in Z]

Promotional Banner

Similar Questions

Explore conceptually related problems

For the equation 1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y) (a)exactly one value of x exists (b)exactly two values of x exists (c)y=-1+n pi+(pi)/(4),n in Z(d)y=1+n pi+(pi)/(4),n in Z

For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) (a)exactly one value of x exists (b)exactly two values of x exists (c) y=-1+npi+pi/4,n in Z (d) y=1+npi+pi/4, n in Z

For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) (a)exactly one value of x exists (b)exactly two values of x exists (c) y=-1+npi+pi/4,n in Z (d) y=1+npi+pi/4, n in Z

For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) (a)exactly one value of x exists (b)exactly two values of x exists (c) y=-1+npi+pi/4,n in Z (d) y=1+npi+pi/4, n in Z

For the equation 1-2x-x^2=tan^2(x+y)+cot^2(x+y) exactly one value of x exists exactly two values of x exists y=-1+npi+pi/4,n in Z y=1+npi+pi/4, n in Z

Solve for x and y , 1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y) .

Solve for x and y , 1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y) .

Solve for x and y , 1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y) .

Solve for x and y , 1-2x-x^(2)=tan^(2)(x+y)+cot^(2)(x+y) .