Home
Class 11
MATHS
" Q5.Prove that "(2n!)/(n!)=[1.3.5.........

" Q5.Prove that "(2n!)/(n!)=[1.3.5..........(2n-1)]2^(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: ((2n)!)/(n !)={1. 3. 5..... (2n-1)}2^ndot

Prove that ((2n+1)!)/(n !)=2^n{1. 3. 5 .........(2n-1)(2n+1)}

Prove that .^(2n)P_(n)={1.3.5.....(2n-1)}.2n

Prove that ((2n+1)!)/(n!)=2^(n)[1.3.5.....(2n-1)*(2n+1)]

Prove that : ^(2n)C_n = (2^n [1.3.5. ..........(2n-1)])/(n!) .

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot