Home
Class 12
MATHS
int(dx)/(cos2x+3sin^(2)x)=...

int(dx)/(cos2x+3sin^(2)x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the mistake of the following evaluation of the integral I=int_(0)^( pi)(dx)/(1+2sin^(2)x)I=int_(0)^( pi)(dx)/(cos^(2)x+3sin^(2)x)=int_(0)^( pi)(sec^(2)xdx)/(1+3tan^(2)x)=(1)/(sqrt(3))[tan^(-1)(sqrt(3)tan x)]_(0)^( pi)=0

Evaluate: int(1)/(cos2x+3sin^(2)x)dx

Evaluate: int(1)/(cos2x+3sin^(2)x)dx

int(1)/(cos2x+sin^(2)x)dx=

int(1)/(cos2x+sin^(2)x)dx

Find the mistake of the following evaluation of the integral I=int_0^pi(dx)/(1+2sin^2x) I=int_0^pi(dx)/(cos^2x+3sin^2x) =int_0^pi(sec^2x dx)/(1+3tan^2x)=1/(sqrt(3))[tan^(-1)(sqrt(3)tanx)]pi0=0

Find the mistake in the following evaluation of the integral I=int_0^pi(dx)/(1+2sin^2x) , then : I=int_0^pi(dx)/(cos^2x+3sin^2x) =int_0^pi(sec^2x dx)/(1+3tan^2x)=1/(sqrt(3))[tan^(-1)(sqrt(3)tanx)]_pi^0=0

Find the mistake in the following evaluation of the integral I=int_0^pi(dx)/(1+2sin^2x) , then : I=int_0^pi(dx)/(cos^2x+3sin^2x) =int_0^pi(sec^2x dx)/(1+3tan^2x)=1/(sqrt(3))[tan^(-1)(sqrt(3)tanx)]_pi^0=0

int (dx)/((cos ^(2)x-3sin^(2)x))=?