Home
Class 12
MATHS
If f(x) + f(y) = f((x+y)/(1-xy)) for all...

If `f(x) + f(y) = f((x+y)/(1-xy))` for all `x, y in R (xy ne 1) and lim_(x rarr 0) (f(x))/(x) = 2`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0) (f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

"If "f(x)+f(y)=f((x+y)/(1-xy))" for all "x,y in R, (xyne1), and lim_(xrarr0)(f(x))/(x)=2" then find "f((1)/(sqrt(3))) and f'(1).

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(sqrt3) and f'(-2) .

f(x)+f(y)=f((x+y)/(1-xy)) ,for allx,yinR.(xy!=1),and lim_(x->0) f(x)/x=2.Findf(1/sqrt3)and f'(1).

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f(9) is

Let f : R rarr R be a differentiable function satisfying f(x+y)=f(x) + f(y) +x^2y+xy^2 for all real number x and y . If lim_(x rarr 0)(f(x))/x = 1 , then The value of f'(3) is

Suppose f is a function that satisfies the equation f(x+y)=f(x)+f(y)+x^(2)y+xy^(2)? for all real numbers x and y. If lim_(x rarr0)(f(x))/(x)=1 then