Home
Class 11
MATHS
If (ax)/(costheta)+(by)/(sintheta)=a^2-b...

If `(ax)/(costheta)+(by)/(sintheta)=a^2-b^2` , and `(axsintheta)/(cos^2theta)-(bycostheta)/(sin^2theta)=0`, prove that `(ax)^(2/3)+(by)^(2/3)=(a^2-b^2)^(2/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (ax)/costheta+(by)/(sintheta)=a^2-b^2 and (axsintheta)/cos^2theta-(bycostheta)/sin^2theta=0 ,show that (ax)^(2//3)+(by)^(2//3)=(a^2-b^2)^(2//3)

If (ax)/(cos theta)+(by)/(sin theta)=a^(2)-b^(2), (ax sin theta)/(cos^(2) theta)-(b y cos theta)/(sin^(2) theta)= 0 show that (ax)^(2//3) +(by)^(2//3) =(a^(2)-b^(2))^(2//3)

If (ax)/(cos theta)+(by)/(sin theta)=a^(2)-b^(2)(ax sin theta)/(cos^(2)theta)-(by cos theta)/(sin^(2)theta)=0then(ax)^((2)/(3))+(by)^((2)/(3))=

(sintheta+sin 2theta)/(1+costheta+cos2theta)=

(sintheta+sin2theta)/(1+costheta+cos2theta) =

(sintheta+sin2theta)/(1+costheta+cos2theta)=?

(sintheta+sin2theta)/(1+costheta+cos2theta)

(sintheta+sin2theta)/(1+costheta+cos2theta)

If (xcos theta)/a+(ysin theta)/b=1 and (ax)/(cos theta)-(by)/(sin theta)=a^2-b^2 ,"prove that" (x^2)/(a^2)+(y^2)/(b^2)=1 .

Prove that (sintheta-2sin^3theta)/(2cos^3theta-costheta)=tantheta .