Home
Class 10
MATHS
Prove that sec^(2)12^(@)-(1)/(tan^(2)78^...

Prove that `sec^(2)12^(@)-(1)/(tan^(2)78^(@))=1`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec^(2)11^(@)-(1)/(tan^(2)79^(@))=1 .

sec ^ (2) 12 ^ (0) - (1) / (tan ^ (2) 78 ^ (@))

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove: sec^(4)A(1-sin^(4)A)-2tan^(2)A=1

prove that 1+2sec^(2)A*tan^(2)A-sec^(4)A-tan^(4)A=0

Prove that |(sec^(2)theta,tan^(2)theta,1),(tan^(2)theta,sec^(2)theta,-1),(38,38,2)|=0.

Prove that: sec^4A(1-sin^4A) -2 tan^2A=1 .

Prove that 2tan^(-1)((2)/(3))=tan^(-1)((12)/(5))

Prove that :sec^(6)x-tan^(6)x-3sec^(2)x" ."tan^(2)x=1

The value of sec^2 12^@-frac(1)(tan^2 78^@ is (A) 0 (B) 1 (C) 2 (D) 3