Home
Class 14
MATHS
" 4."quad " if "(cos A)/(cos B)=p,(sin A...

" 4."quad " if "(cos A)/(cos B)=p,(sin A)/(sin B)=q," then show that "(p^(2)(1-q^(2)))/(p^(2)-q^(2))=cos^(2)A

Promotional Banner

Similar Questions

Explore conceptually related problems

If (cosA)/(cosB)=p,(sinA)/(sinB)=q ,then show that (p^(2)(1-q^(2)))/(p^(2)-q^(2))=cos^(2)A .

If (cosA)/(cosB)=p,(sinA)/(sinB)=q ,then show that (p^(2)(1-q^(2)))/(p^(2)-q^(2))=cos^(2)A .

If (cosA)/(cosB)=p,(sinA)/(sinB)=q ,then show that (p^(2)(1-q^(2)))/(p^(2)-q^(2))=cos^(2)A .

If (cos A)/(cos B)=p,(sin A)/(sin B)=q ,then (p^(2)(q^(2)-1))/(p^(2)-q^(2)) is equal to (A)-cos^(2)A(B)cos^(2)B(C)cos^(2)A(D)sin^(2)B

If P=(2sin A)/(1+cos A+sin A) and Q=(cos A)/(1+sin A), then

If A=[{:(cosq,sinq),(-sinq,cosq):}] , then show that A^(2)=[{:(cos(2q),sin(2q)),(-sin(2q),cos(2q)):}] .

If p=a cos^(2)theta sin theta and q=a sin^(2)theta cos theta then (((p^(2)+q^(2))^(3))/(p^(2)q^(2)) is

tan^(2)P-tan^(2)Q=(sin^(2)P-sin^(2)Q)/(cos^(2)P*cos^(2)Q)

cos^(-1)((p)/(a))+cos^(-1)((q)/(b))=alpha then (p^(2))/(a^(2))-(2pq)/(ab)+(q^(2))/(b^(2)) equals

If "Cos"^(-1)P/a+"Cos"^(-1)q/b=alpha , then prove that (p^(2))/(a^(2))-(2pq)/(ab).cos alpha+(q^(2))/(b^(2))=sin^(2)alpha