Home
Class 12
MATHS
the points (alpha,beta) , (gamma , delta...

the points `(alpha,beta) , (gamma , delta) ,(alpha , delta) , (gamma , beta) ` are different real numbers are:

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos (alpha + beta) sin (gamma + delta) = cos (alpha - beta) sin (gamma - delta) then:

If cos (alpha+beta) sin (gamma+delta)=cos (alpha-beta) sin (gamma-delta) , prove that : cot alpha cot beta cot gamma= cot delta .

Let sin^(-1)alpha+sin^(-1)beta+sin^(-1)gamma=pi and alpha, beta, gamma are non zero real numbers such that (alpha+beta+gamma)(alpha+beta-gamma)=3alphabeta then value of gamma

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents:

Statement I The minimum value of the expression sinalpha+sinbeta+singamma where alpha, beta, gamma are real numbers such that alpha+beta+gamma=pi is negative. Statement II If alpha+beta+gamma=pi , then alpha, beta, gamma are the angles of a triangle.

Prove that |(2,alpha+beta+gamma+delta,alphabeta+gammadelta),(alpha+beta+gamma+delta,2(alpha+beta)(gamma+delta),alpha beta(gamma+delta)+gamma delta(gamma+beta)),(alpha beta+gamma delta,alpha beta(gamma+delta)+gammadelta(alpha+beta),2alphabeta gamma delta)| = 0

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If alpha, beta, gamma and delta are the roots of the equation x ^(4) -bx -3 =0, then an equation whose roots are (alpha +beta+gamma)/(delta^(2)), (alpha +beta+delta)/(gamma^(2)), (alpha +delta+gamma)/(beta^(2)), and (delta +beta+gamma)/(alpha^(2)), is:

If cos(alpha+beta)sin(gamma+delta)=cos(alpha-beta)sin(gamma-delta) then the value of cot alpha cot beta cot gamma, is