Home
Class 13
MATHS
[" 5.If "y(1)=max|z-omega t-|z-omega^(2)...

[" 5.If "y_(1)=max|z-omega t-|z-omega^(2)|," where "|z|=2" and "y_(2)=max],[|z-omega t-|z-omega^(2)|," where "|z|=(1)/(2)" and "omega" and "omega^(2)" are complex "],[" cube roots of unity,then "],[[" (a) "y_(1)=sqrt(3):y_(2)=sqrt(3)," (b) "y_(1)3;y_(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y_(1)=max||z-omega|-|z-omega^(2)|| , where |z|=2 and y_(2)=max||z-omega|-|z-omega^(2)|| , where |z|=(1)/(2) and omega and omega^(2) are complex cube roots of unity, then

If y_(1)=max||z-omega|-|z-omega^(2)|| , where |z|=2 and y_(2)=max||z-omega|-|z-omega^(2)|| , where |z|=(1)/(2) and omega and omega^(2) are complex cube roots of unity, then

If arg ((z-omega)/(z-omega^(2)))=0 then prove that Re (z)=-(1)/(2)(omega and omega^(2) are non-real cube roots of unity).

Prove that - omega, " and " - omega^(2) are the roots of z^(2) - z + 1 = 0 , where omega " and " omega^(2) are the complex cube roots of unity .

If x=p+q,y=p omega+q omega^(2), and z=p omega^(2)+q omega where omega is a complex cube root of unity then xyz=

If x=p+q,y=pomega+q omega^(2) and z=p omega^(2)+q omega , where omega is a complex cube root of unity, then xyz equals to

Let S = { z: x = x+ iy, y ge 0,|z-z_(0)| le 1} , where |z_(0)|= |z_(0) - omega|= |z_(0) - omega^(2)|, omega and omega^(2) are non-real cube roots of unity. Then

Let S = { z: x = x+ iy, y ge 0,|z-z_(0)| le 1} , where |z_(0)|= |z_(0) - omega|= |z_(0) - omega^(2)|, omega and omega^(2) are non-real cube roots of unity. Then

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then