Home
Class 12
MATHS
lim(n-gtoo)(1/(1xx3)+1/(3xx5)+1/(5xx7)++...

`lim_(n-gtoo)(1/(1xx3)+1/(3xx5)+1/(5xx7)++u p t0^(prime)n^(prime)t e r m s)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)

If 1/(1!xx11!)+1/(3!xx9!)+1/(5!xx7!)=2^n/n! Then m+ n=

(1/3xx1/5)/(1/3xx1/5+1/3xx1/6+1/3xx1/7)

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

Find the sum of the series: (1)/((1xx3))+(1)/((3xx5))+(1)/((5xx7))+...+(1)/((2n-1)(2n+1))

The value of lim_(n->oo)sum_(r=1)^(n)1/(5^n).^n C_r(sum_(t=0)^(r-1).^r C_t .3^t) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to

The value of lim_(n->oo)sum_(r=0)^(n) (sum_(t=0)^(r-1)1/(5^n)*"^n C_r * "^r C_t .(3^t)) is equal to